Improved orbit calculations and added n-body problem solution

This commit is contained in:
Verox001 2025-05-04 19:24:03 +02:00
parent 69d4e8105c
commit 0618b81763
3 changed files with 120 additions and 36 deletions

View File

@ -287,7 +287,7 @@ impl<'a> State<'a> {
index_count: circle_indices.len() as u32,
});
let mut sim = Simulator::new(60.0 * 60.0 * 24.0);
let mut sim = Simulator::new(43200.0);
sim.add_body(Body {
name: "Sun".to_string(),
position: [0.0, 0.0],

View File

@ -4,3 +4,4 @@ version = "0.1.0"
edition = "2021"
[dependencies]
rayon = "1.8"

View File

@ -1,4 +1,6 @@
use std::sync::Mutex;
use crate::body::Body;
use rayon::prelude::*;
const G: f64 = 6.67430e-11;
@ -28,48 +30,129 @@ impl Simulator {
}
pub fn step(&mut self) {
let n = self.bodies.len();
let dt = self.timestep;
let n = self.bodies.len();
let mut accelerations = vec![[0.0, 0.0]; n];
for i in 0..n {
for j in 0..n {
if i == j {
continue;
#[derive(Clone)]
struct State {
position: [f64; 2],
velocity: [f64; 2],
}
let (bi, bj) = (&self.bodies[i], &self.bodies[j]);
let original_states: Vec<State> = self
.bodies
.iter()
.map(|b| State {
position: b.position,
velocity: b.velocity,
})
.collect();
let dx = bj.position[0] - bi.position[0];
let dy = bj.position[1] - bi.position[1];
let dist_sq = distance_squared(bi.position, bj.position);
let masses: Vec<f64> = self.bodies.iter().map(|b| b.mass).collect();
fn compute_accelerations(states: &[State], masses: &[f64]) -> Vec<[f64; 2]> {
let n = states.len();
let accels = (0..n).map(|_| Mutex::new([0.0, 0.0])).collect::<Vec<_>>();
(0..n).into_par_iter().for_each(|i| {
for j in (i + 1)..n {
let dx = states[j].position[0] - states[i].position[0];
let dy = states[j].position[1] - states[i].position[1];
let dist_sq = dx * dx + dy * dy;
let dist = dist_sq.sqrt();
if dist < 1e-3 {
continue;
}
let force = G * bi.mass * bj.mass / dist_sq;
let accel = force / bi.mass;
let force = G * masses[i] * masses[j] / dist_sq;
let ax = force * dx / dist;
let ay = force * dy / dist;
let ax = accel * dx / dist;
let ay = accel * dy / dist;
accelerations[i][0] += ax;
accelerations[i][1] += ay;
{
let mut a_i_lock = accels[i].lock().unwrap();
a_i_lock[0] += ax / masses[i];
a_i_lock[1] += ay / masses[i];
}
{
let mut a_j_lock = accels[j].lock().unwrap();
a_j_lock[0] -= ax / masses[j];
a_j_lock[1] -= ay / masses[j];
}
}
});
accels
.into_iter()
.map(|mutex| mutex.into_inner().unwrap())
.collect()
}
// RK4 Stufen
let k1_pos = original_states.iter().map(|s| s.velocity).collect::<Vec<_>>();
let k1_vel = compute_accelerations(&original_states, &masses);
let mut temp_states = original_states
.iter()
.enumerate()
.map(|(i, s)| State {
position: [
s.position[0] + k1_pos[i][0] * dt / 2.0,
s.position[1] + k1_pos[i][1] * dt / 2.0,
],
velocity: [
s.velocity[0] + k1_vel[i][0] * dt / 2.0,
s.velocity[1] + k1_vel[i][1] * dt / 2.0,
],
})
.collect::<Vec<_>>();
let k2_pos = temp_states.iter().map(|s| s.velocity).collect::<Vec<_>>();
let k2_vel = compute_accelerations(&temp_states, &masses);
for i in 0..n {
let a = accelerations[i];
temp_states[i].position[0] = original_states[i].position[0] + k2_pos[i][0] * dt / 2.0;
temp_states[i].position[1] = original_states[i].position[1] + k2_pos[i][1] * dt / 2.0;
temp_states[i].velocity[0] = original_states[i].velocity[0] + k2_vel[i][0] * dt / 2.0;
temp_states[i].velocity[1] = original_states[i].velocity[1] + k2_vel[i][1] * dt / 2.0;
}
let k3_pos = temp_states.iter().map(|s| s.velocity).collect::<Vec<_>>();
let k3_vel = compute_accelerations(&temp_states, &masses);
for i in 0..n {
temp_states[i].position[0] = original_states[i].position[0] + k3_pos[i][0] * dt;
temp_states[i].position[1] = original_states[i].position[1] + k3_pos[i][1] * dt;
temp_states[i].velocity[0] = original_states[i].velocity[0] + k3_vel[i][0] * dt;
temp_states[i].velocity[1] = original_states[i].velocity[1] + k3_vel[i][1] * dt;
}
let k4_pos = temp_states.iter().map(|s| s.velocity).collect::<Vec<_>>();
let k4_vel = compute_accelerations(&temp_states, &masses);
// Finale Updates
for i in 0..n {
let body = &mut self.bodies[i];
let old_position = body.position;
body.velocity[0] += a[0] * dt;
body.velocity[1] += a[1] * dt;
body.position[0] += (dt / 6.0)
* (k1_pos[i][0] + 2.0 * k2_pos[i][0] + 2.0 * k3_pos[i][0] + k4_pos[i][0]);
body.position[1] += (dt / 6.0)
* (k1_pos[i][1] + 2.0 * k2_pos[i][1] + 2.0 * k3_pos[i][1] + k4_pos[i][1]);
body.position[0] += body.velocity[0] * dt;
body.position[1] += body.velocity[1] * dt;
body.velocity[0] += (dt / 6.0)
* (k1_vel[i][0] + 2.0 * k2_vel[i][0] + 2.0 * k3_vel[i][0] + k4_vel[i][0]);
body.velocity[1] += (dt / 6.0)
* (k1_vel[i][1] + 2.0 * k2_vel[i][1] + 2.0 * k3_vel[i][1] + k4_vel[i][1]);
// Bewegung loggen
let dx = body.position[0] - old_position[0];
let dy = body.position[1] - old_position[1];
let movement = (dx * dx + dy * dy).sqrt();
if i == 1 {
println!("Earth moved {:.6} meters", movement);
}
}
self.time += dt;