Init renderer

This commit is contained in:
Verox001 2025-01-13 13:14:59 +01:00
commit 52af9dfd86
10 changed files with 2769 additions and 0 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/target

8
.idea/.gitignore generated vendored Normal file
View File

@ -0,0 +1,8 @@
# Default ignored files
/shelf/
/workspace.xml
# Editor-based HTTP Client requests
/httpRequests/
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml

8
.idea/modules.xml generated Normal file
View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/orbital_simulation.iml" filepath="$PROJECT_DIR$/.idea/orbital_simulation.iml" />
</modules>
</component>
</project>

11
.idea/orbital_simulation.iml generated Normal file
View File

@ -0,0 +1,11 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="EMPTY_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$">
<sourceFolder url="file://$MODULE_DIR$/src" isTestSource="false" />
<excludeFolder url="file://$MODULE_DIR$/target" />
</content>
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

6
.idea/vcs.xml generated Normal file
View File

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

2170
Cargo.lock generated Normal file

File diff suppressed because it is too large Load Diff

12
Cargo.toml Normal file
View File

@ -0,0 +1,12 @@
[package]
name = "orbital_simulation"
version = "0.1.0"
edition = "2021"
[dependencies]
pollster = "0.3"
winit = { version = "0.29", features = ["rwh_05"] }
env_logger = "0.10"
log = "0.4"
wgpu = "22.0"
bytemuck = { version = "1.16", features = [ "derive" ] }

432
src/lib.rs Normal file
View File

@ -0,0 +1,432 @@
use winit::{
event::*,
event_loop::EventLoop,
keyboard::{KeyCode, PhysicalKey},
window::WindowBuilder,
};
use winit::window::Window;
use wgpu::util::DeviceExt;
#[repr(C)]
#[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)]
struct Vertex {
position: [f32; 3],
color: [f32; 3],
}
impl Vertex {
fn desc() -> wgpu::VertexBufferLayout<'static> {
wgpu::VertexBufferLayout {
array_stride: std::mem::size_of::<Vertex>() as wgpu::BufferAddress,
step_mode: wgpu::VertexStepMode::Vertex,
attributes: &[
wgpu::VertexAttribute {
offset: 0,
shader_location: 0,
format: wgpu::VertexFormat::Float32x3,
},
wgpu::VertexAttribute {
offset: std::mem::size_of::<[f32; 3]>() as wgpu::BufferAddress,
shader_location: 1,
format: wgpu::VertexFormat::Float32x3,
}
]
}
}
}
const VERTICES: &[Vertex] = &[
Vertex { position: [-0.0868241, 0.49240386, 0.0], color: [0.5, 0.0, 0.5] }, // A
Vertex { position: [-0.49513406, 0.06958647, 0.0], color: [0.5, 0.0, 0.5] }, // B
Vertex { position: [-0.21918549, -0.44939706, 0.0], color: [0.5, 0.0, 0.5] }, // C
Vertex { position: [0.35966998, -0.3473291, 0.0], color: [0.5, 0.0, 0.5] }, // D
Vertex { position: [0.44147372, 0.2347359, 0.0], color: [0.5, 0.0, 0.5] }, // E
];
const INDICES: &[u16] = &[
0, 1, 4,
1, 2, 4,
2, 3, 4,
];
struct State<'a> {
surface: wgpu::Surface<'a>,
device: wgpu::Device,
queue: wgpu::Queue,
config: wgpu::SurfaceConfiguration,
size: winit::dpi::PhysicalSize<u32>,
// The window must be declared after the surface so
// it gets dropped after it as the surface contains
// unsafe references to the window's resources.
window: &'a Window,
render_pipeline: wgpu::RenderPipeline,
vertex_buffer: wgpu::Buffer,
index_buffer: wgpu::Buffer,
num_indices: u32,
}
impl<'a> State<'a> {
// Creating some of the wgpu types requires async code
async fn new(window: &'a Window) -> State<'a> {
let size = window.inner_size();
let num_vertices = VERTICES.len() as u32;
// The instance is a handle to our GPU
// Backends::all => Vulkan + Metal + DX12 + Browser WebGPU
let instance = wgpu::Instance::new(wgpu::InstanceDescriptor {
// TODO: Change this when enabling switchable graphics for the user
// If this is not for the web, we can use Vulkan + Metal + DX12
#[cfg(not(target_arch="wasm32"))]
backends: wgpu::Backends::PRIMARY,
// TODO: Probably remove this, because WebAssembly won't be used for the foreseeable future
#[cfg(target_arch="wasm32")]
backends: wgpu::Backends::GL,
..Default::default()
});
let surface = instance.create_surface(window).unwrap();
// This checks all the adapters on a machine and returns an iterator
/*let adapter = instance
.enumerate_adapters(wgpu::Backends::all())
.filter(|adapter| {
// Check if this adapter supports our surface
adapter.is_surface_supported(&surface)
})
.next()
.unwrap()*/
// TODO: Include Telemetry to see how many users WGPU chooses a suboptimal adapter for
let adapter = instance.request_adapter(
&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::default(),
compatible_surface: Some(&surface),
force_fallback_adapter: false,
},
).await.unwrap();
log::info!("Adapter: {:?}", adapter.get_info());
// List of all features the current device supports
// let features = adapter.features();
let (device, queue) = adapter.request_device(
&wgpu::DeviceDescriptor {
required_features: wgpu::Features::empty(),
// WebGL doesn't support all of wgpu's features, so if
// we're building for the web, we'll have to disable some.
// TODO: Probably remove check for wasm32, because WebAssembly won't be used for the foreseeable future
required_limits: if cfg!(target_arch = "wasm32") {
wgpu::Limits::downlevel_webgl2_defaults()
} else {
wgpu::Limits::default()
},
label: None,
// Default is performance, which requires more memory, but is faster
memory_hints: Default::default(),
},
None, // Trace path
).await.unwrap();
let surface_caps = surface.get_capabilities(&adapter);
// Shader code assumes an sRGB surface texture. Using a different
// one will result in all the colors coming out darker. If you want to support non
// sRGB surfaces, you'll need to account for that when drawing to the frame.
let surface_format = surface_caps.formats.iter()
.find(|f| f.is_srgb())
.copied()
.unwrap_or(surface_caps.formats[0]);
log::info!("Surface format: {:?}", surface_format);
log::info!("Surface present modes: {:?}", surface_caps.present_modes);
log::info!("Surface alpha modes: {:?}", surface_caps.alpha_modes);
let config = wgpu::SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: surface_format,
width: size.width,
height: size.height,
// PresentMod::Fifo => VSync (Always supported)
present_mode: surface_caps.present_modes[0],
alpha_mode: surface_caps.alpha_modes[0],
view_formats: vec![],
desired_maximum_frame_latency: 2,
};
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[],
push_constant_ranges: &[],
});
let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some("Shader"),
source: wgpu::ShaderSource::Wgsl(include_str!("shader.wgsl").into()),
});
let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: "vs_main",
buffers: &[Vertex::desc()],
compilation_options: Default::default(),
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: "fs_main",
targets: &[Some(wgpu::ColorTargetState {
format: config.format,
blend: Some(wgpu::BlendState::REPLACE),
write_mask: wgpu::ColorWrites::ALL,
})],
compilation_options: wgpu::PipelineCompilationOptions::default(),
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: Some(wgpu::Face::Back),
// Setting this to anything other than Fill requires Features::NON_FILL_POLYGON_MODE
polygon_mode: wgpu::PolygonMode::Fill,
// Requires Features::DEPTH_CLIP_CONTROL
unclipped_depth: false,
// Requires Features::CONSERVATIVE_RASTERIZATION
conservative: false,
},
depth_stencil: None,
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
cache: None,
});
let vertex_buffer = device.create_buffer_init(
&wgpu::util::BufferInitDescriptor {
label: Some("Vertex Buffer"),
contents: bytemuck::cast_slice(VERTICES),
usage: wgpu::BufferUsages::VERTEX,
}
);
let index_buffer = device.create_buffer_init(
&wgpu::util::BufferInitDescriptor {
label: Some("Index Buffer"),
contents: bytemuck::cast_slice(INDICES),
usage: wgpu::BufferUsages::INDEX,
}
);
let num_indices = INDICES.len() as u32;
Self {
window,
surface,
device,
queue,
config,
size,
render_pipeline,
vertex_buffer,
index_buffer,
num_indices,
}
}
pub fn window(&self) -> &Window {
&self.window
}
fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
if new_size.width > 0 && new_size.height > 0 {
self.size = new_size;
self.config.width = new_size.width;
self.config.height = new_size.height;
self.surface.configure(&self.device, &self.config);
}
}
fn input(&mut self, event: &WindowEvent) -> bool {
// Change color on mouse move
match event {
WindowEvent::CursorMoved { position, .. } => {
/*let size = self.size;
let color = wgpu::Color {
r: position.x as f64 / size.width as f64,
g: position.y as f64 / size.height as f64,
b: 0.3,
a: 1.0,
};
let output = self.surface.get_current_texture().unwrap();
let view = output.texture.create_view(&wgpu::TextureViewDescriptor::default());
let mut encoder = self.device.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
{
let _render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Render Pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(color),
store: wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: None,
occlusion_query_set: None,
timestamp_writes: None,
});
}
self.queue.submit(std::iter::once(encoder.finish()));
output.present();
return true;*/
false
}
WindowEvent::KeyboardInput {
event:
KeyEvent {
state: ElementState::Pressed,
physical_key: PhysicalKey::Code(KeyCode::Space),
..
},
..
} => {
true
}
_ => {
false
}
}
}
fn update(&mut self) {
}
fn render(&mut self) -> Result<(), wgpu::SurfaceError> {
let output = self.surface.get_current_texture()?;
let view = output.texture.create_view(&wgpu::TextureViewDescriptor::default());
let mut encoder = self.device.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Render Pass"),
color_attachments: &[
// This is what @location(0) in the fragment shader targets
Some(wgpu::RenderPassColorAttachment {
view: &view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(
wgpu::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
}
),
store: wgpu::StoreOp::Store,
}
})
],
depth_stencil_attachment: None,
occlusion_query_set: None,
timestamp_writes: None,
});
render_pass.set_pipeline(&self.render_pipeline);
render_pass.set_vertex_buffer(0, self.vertex_buffer.slice(..));
render_pass.set_index_buffer(self.index_buffer.slice(..), wgpu::IndexFormat::Uint16);
render_pass.draw_indexed(0..self.num_indices, 0, 0..1);
}
// submit will accept anything that implements IntoIter
self.queue.submit(std::iter::once(encoder.finish()));
output.present();
Ok(())
}
}
pub async fn run() {
env_logger::init();
let event_loop = EventLoop::new().unwrap();
let window = WindowBuilder::new().build(&event_loop).unwrap();
let mut state = State::new(&window).await;
// Variable used to prevent rendering before the surface is configured
let mut surface_configured = false;
event_loop.run(move |event, control_flow| {
match event {
Event::WindowEvent {
ref event,
window_id,
} if window_id == state.window().id() => if !state.input(event) {
match event {
WindowEvent::CloseRequested
| WindowEvent::KeyboardInput {
event:
KeyEvent {
state: ElementState::Pressed,
physical_key: PhysicalKey::Code(KeyCode::Escape),
..
},
..
} => control_flow.exit(),
WindowEvent::Resized(physical_size) => {
surface_configured = true;
state.resize(*physical_size);
}
WindowEvent::RedrawRequested => {
// This tells winit that we want another frame after this one
state.window().request_redraw();
if !surface_configured {
return;
}
state.update();
match state.render() {
Ok(_) => {}
// Reconfigure the surface if it's lost or outdated
Err(
wgpu::SurfaceError::Lost | wgpu::SurfaceError::Outdated,
) => state.resize(state.size),
// The system is out of memory, we should probably quit
Err(wgpu::SurfaceError::OutOfMemory) => {
log::error!("OutOfMemory");
control_flow.exit();
}
// This happens when the a frame takes too long to present
Err(wgpu::SurfaceError::Timeout) => {
log::warn!("Surface timeout")
}
}
}
_ => {}
}
}
_ => {}
}
}).expect("Event loop crashed unexpectedly");
}

93
src/main.rs Normal file
View File

@ -0,0 +1,93 @@
/*
This program is for simulating orbits of planets around a star.
A body can be a star, planet or moon. (Doesn't matter for now)
*/
use orbital_simulation::run;
// Gravitational constant
static G: f64 = 6.67430e-11;
struct Body {
name: String,
mass: f64,
radius: f64,
}
fn calculate_gravitational_force(body1: &Body, body2: &Body, distance: f64) -> f64 {
(G * body1.mass * body2.mass) / distance.powi(2)
}
fn calculate_required_velocity(body1: &Body, body2: &Body, distance: f64, force: f64) -> f64 {
(force * distance / body2.mass).sqrt()
}
fn main() {
// simulate a two body system to simplify the problem
let sun = Body {
name: "Sun".to_string(),
mass: 1.989e30,
radius: 6.9634e8,
};
let earth = Body {
name: "Earth".to_string(),
mass: 5.972e24,
radius: 6.371e6,
};
/*// Calculate the velocity pulling the earth towards the sun
let distance = 1.496e11;
let force = calculate_gravitational_force(&sun, &earth, distance);
let velocity = calculate_required_velocity(&sun, &earth, distance, force);
println!("The velocity of the earth is: {} m/s", velocity);*/
// Now we simulate a whole orbit around the sun
let distance = 1.496e11;
let force = calculate_gravitational_force(&sun, &earth, distance);
let velocity = calculate_required_velocity(&sun, &earth, distance, force);
let mut time = 0.0;
let mut position = 0.0;
let mut velocity = velocity;
let mut acceleration = 0.0;
let mut force = force;
let mut distance = distance;
let mut mass = earth.mass;
let mut radius = earth.radius;
let dt = 1.0;
let steps = 1000;
for _ in 0..steps {
// Calculate the acceleration
acceleration = force / mass;
// Calculate the new position
position += velocity * dt + 0.5 * acceleration * dt.powi(2);
// Calculate the new velocity
velocity += acceleration * dt;
// Calculate the new distance
distance = position;
// Calculate the new force
force = calculate_gravitational_force(&sun, &earth, distance);
// Calculate the new mass
mass = earth.mass;
// Calculate the new radius
radius = earth.radius;
// Calculate the new time
time += dt;
println!("Time: {} s, Position: {} m, Velocity: {} m/s, Acceleration: {} m/s^2, Force: {} N, Distance: {} m, Mass: {} kg, Radius: {} m", time, position, velocity, acceleration, force, distance, mass, radius);
}
pollster::block_on(run());
}

28
src/shader.wgsl Normal file
View File

@ -0,0 +1,28 @@
// Vertex shader
struct VertexInput {
@location(0) position: vec3<f32>,
@location(1) color: vec3<f32>,
};
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
@location(0) color: vec3<f32>,
};
@vertex
fn vs_main(
model: VertexInput,
) -> VertexOutput {
var out: VertexOutput;
out.color = model.color;
out.clip_position = vec4<f32>(model.position, 1.0);
return out;
}
// Fragment shader
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
return vec4<f32>(in.color, 1.0);
}