Refactored and structured code to reduce load in state

This commit is contained in:
Verox001 2025-05-08 20:17:31 +02:00
parent 1b25b358df
commit f4484ba335
7 changed files with 533 additions and 351 deletions

View File

@ -0,0 +1,10 @@
use wgpu::{Device, Queue, Surface, SurfaceConfiguration};
use crate::render::SampleCount;
pub struct DeviceManager<'a> {
pub surface: Surface<'a>,
pub device: Device,
pub queue: Queue,
pub config: SurfaceConfiguration,
pub sample_count: SampleCount,
}

View File

@ -0,0 +1,60 @@
use std::collections::HashMap;
use wgpu::{Device, Buffer};
use crate::render::{create_circle_vertices, create_sphere_vertices, Geometry, Shape, Vertex};
use wgpu::util::DeviceExt;
pub struct GeometryManager {
pub geometries: HashMap<Shape, Geometry>,
}
impl GeometryManager {
pub fn new(device: &Device) -> Self {
let mut geometries = HashMap::new();
// Circle
let (circle_vertices, circle_indices) = create_circle_vertices(512, 0.5, [0.5, 0.5, 0.5]);
geometries.insert(
Shape::Circle,
Self::create_geometry(device, &circle_vertices, &circle_indices),
);
// Sphere
let (sphere_vertices, sphere_indices) = create_sphere_vertices(32, 32, 0.5, [0.5, 0.5, 0.5]);
geometries.insert(
Shape::Sphere,
Self::create_geometry(device, &sphere_vertices, &sphere_indices),
);
// Füge hier beliebige weitere Shapes hinzu
Self { geometries }
}
pub fn get(&self, shape: &Shape) -> Option<&Geometry> {
self.geometries.get(shape)
}
pub fn shapes(&self) -> impl Iterator<Item = Shape> + '_ {
self.geometries.keys().copied()
}
fn create_geometry(device: &Device, vertices: &[Vertex], indices: &[u16]) -> Geometry {
let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Vertex Buffer"),
contents: bytemuck::cast_slice(vertices),
usage: wgpu::BufferUsages::VERTEX,
});
let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Index Buffer"),
contents: bytemuck::cast_slice(indices),
usage: wgpu::BufferUsages::INDEX,
});
Geometry {
vertex_buffer,
index_buffer,
index_count: indices.len() as u32,
}
}
}

View File

@ -0,0 +1,95 @@
use crate::camera::Camera;
use crate::render::Globals;
use wgpu::{BindGroup, BindGroupLayout, Buffer, Device, Queue};
use bytemuck::{Pod, Zeroable};
use wgpu::util::DeviceExt;
#[repr(C)]
#[derive(Copy, Clone, Pod, Zeroable)]
pub struct GlobalsUniform {
pub view_proj: [[f32; 4]; 4],
pub resolution: [f32; 2],
_padding: [f32; 2],
}
pub struct GlobalsManager {
buffer: Buffer,
pub(crate) bind_group: BindGroup,
layout: BindGroupLayout,
resolution: [f32; 2],
}
impl GlobalsManager {
pub fn new(device: &Device, width: u32, height: u32, camera: &Camera) -> Self {
let resolution = [width as f32, height as f32];
let view_proj = camera.build_view_projection_matrix();
let data = GlobalsUniform {
view_proj: view_proj.into(),
resolution,
_padding: [0.0; 2],
};
let buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Globals Buffer"),
contents: bytemuck::cast_slice(&[data]),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
});
let layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: Some("Globals Bind Group Layout"),
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX_FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
});
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
label: Some("Globals Bind Group"),
layout: &layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: buffer.as_entire_binding(),
}],
});
Self {
buffer,
bind_group,
layout,
resolution,
}
}
pub fn update(&mut self, queue: &Queue, camera: &Camera) {
let view_proj = camera.build_view_projection_matrix();
let data = GlobalsUniform {
view_proj: view_proj.into(),
resolution: self.resolution,
_padding: [0.0; 2],
};
queue.write_buffer(&self.buffer, 0, bytemuck::cast_slice(&[data]));
}
pub fn resize(&mut self, width: u32, height: u32) {
self.resolution = [width as f32, height as f32];
}
pub fn layout(&self) -> &BindGroupLayout {
&self.layout
}
pub fn bind_group(&self) -> &BindGroup {
&self.bind_group
}
pub fn resolution(&self) -> [f32; 2] {
self.resolution
}
}

View File

@ -0,0 +1,65 @@
use crate::render::{InstanceRaw, RenderInstance, Shape};
use wgpu::{Buffer, Device, Queue};
use wgpu::util::DeviceExt;
use std::mem::size_of;
pub struct InstanceManager {
instances: Vec<RenderInstance>,
raw: Vec<InstanceRaw>,
buffer: Buffer,
}
impl InstanceManager {
pub fn new(device: &Device) -> Self {
let buffer = device.create_buffer(&wgpu::BufferDescriptor {
label: Some("Instance Buffer (empty)"),
size: 1,
usage: wgpu::BufferUsages::VERTEX | wgpu::BufferUsages::COPY_DST,
mapped_at_creation: false,
});
Self {
instances: Vec::new(),
raw: Vec::new(),
buffer,
}
}
pub fn set_instances(&mut self, device: &Device, queue: &Queue, instances: Vec<RenderInstance>) {
self.raw = instances.iter().map(RenderInstance::to_raw).collect();
let byte_len = (self.raw.len() * size_of::<InstanceRaw>()) as wgpu::BufferAddress;
if byte_len > self.buffer.size() {
self.buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Instance Buffer (resized)"),
contents: bytemuck::cast_slice(&self.raw),
usage: wgpu::BufferUsages::VERTEX | wgpu::BufferUsages::COPY_DST,
});
} else {
queue.write_buffer(&self.buffer, 0, bytemuck::cast_slice(&self.raw));
}
self.instances = instances;
}
pub fn raw_instances_for_shape(&self, shape: Shape) -> Vec<&InstanceRaw> {
self.instances
.iter()
.zip(self.raw.iter())
.filter(|(inst, _)| inst.shape == shape)
.map(|(_, raw)| raw)
.collect()
}
pub fn buffer(&self) -> &Buffer {
&self.buffer
}
pub fn len(&self) -> usize {
self.instances.len()
}
pub fn is_empty(&self) -> bool {
self.instances.is_empty()
}
}

View File

@ -6,6 +6,11 @@ mod application;
mod input;
mod camera;
mod light;
mod renderer;
mod device_manager;
mod instance_manager;
mod globals;
mod geometry_manager;
pub use body::Body;

View File

@ -0,0 +1,231 @@
use crate::camera::Camera;
use crate::geometry_manager::GeometryManager;
use crate::globals::GlobalsManager;
use crate::instance_manager::InstanceManager;
use crate::light::LightManager;
use crate::render::{Geometry, InstanceRaw, Shape};
use std::collections::HashMap;
use wgpu::{Device, Queue, SurfaceTexture, TextureView};
pub struct Renderer {
pipeline: wgpu::RenderPipeline,
depth_texture: TextureView,
sample_count: u32,
}
impl Renderer {
pub fn new(
device: &Device,
config: &wgpu::SurfaceConfiguration,
global_layout: &wgpu::BindGroupLayout,
light_manager: &mut LightManager,
camera: &Camera,
sample_count: u32,
) -> Self {
let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some("Shader"),
source: wgpu::ShaderSource::Wgsl(include_str!("shader.wgsl").into()),
});
let cluster_assignment = light_manager.compute_cluster_assignments(
camera.build_view_matrix(),
camera.build_view_projection_matrix(),
config.width as f32,
config.height as f32,
);
let cluster_buffers = light_manager.create_cluster_buffers(device, &cluster_assignment);
let pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[
global_layout,
&light_manager.layout,
&cluster_buffers.layout,
],
push_constant_ranges: &[],
});
let pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: Some("vs_main"),
buffers: &[crate::render::Vertex::desc(), InstanceRaw::desc()],
compilation_options: Default::default(),
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: Some("fs_main"),
targets: &[Some(wgpu::ColorTargetState {
format: config.format,
blend: Some(wgpu::BlendState::REPLACE),
write_mask: wgpu::ColorWrites::ALL,
})],
compilation_options: Default::default(),
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: Some(wgpu::Face::Back),
polygon_mode: wgpu::PolygonMode::Fill,
unclipped_depth: false,
conservative: false,
},
depth_stencil: Some(wgpu::DepthStencilState {
format: wgpu::TextureFormat::Depth32Float,
depth_write_enabled: true,
depth_compare: wgpu::CompareFunction::Less,
stencil: wgpu::StencilState::default(),
bias: wgpu::DepthBiasState::default(),
}),
multisample: wgpu::MultisampleState {
count: sample_count,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
cache: None,
});
let depth_texture =
Self::create_depth_texture(device, config.width, config.height, sample_count);
Self {
pipeline,
depth_texture,
sample_count,
}
}
pub fn resize(&mut self, device: &Device, width: u32, height: u32) {
self.depth_texture = Self::create_depth_texture(device, width, height, self.sample_count);
}
fn create_depth_texture(
device: &Device,
width: u32,
height: u32,
sample_count: u32,
) -> TextureView {
let texture = device.create_texture(&wgpu::TextureDescriptor {
label: Some("Depth Texture"),
size: wgpu::Extent3d {
width,
height,
depth_or_array_layers: 1,
},
mip_level_count: 1,
sample_count,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Depth32Float,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
view_formats: &[],
});
texture.create_view(&Default::default())
}
pub fn render_frame(
&mut self,
device: &Device,
queue: &Queue,
output: SurfaceTexture,
view: &TextureView,
surface_format: wgpu::TextureFormat,
globals: &mut GlobalsManager,
camera: &Camera,
light_manager: &mut LightManager,
geometry: &GeometryManager,
instances: &InstanceManager,
) -> Result<(), wgpu::SurfaceError> {
// Update uniform buffer
globals.update(queue, camera);
// Update cluster buffers
let assignment = light_manager.compute_cluster_assignments(
camera.build_view_matrix(),
camera.build_view_projection_matrix(),
globals.resolution()[0],
globals.resolution()[1],
);
light_manager.update_cluster_buffers(device, queue, &assignment);
light_manager.update_gpu(queue);
let multisampled_texture = device.create_texture(&wgpu::TextureDescriptor {
label: Some("Multisample Target"),
size: wgpu::Extent3d {
width: globals.resolution()[0] as u32,
height: globals.resolution()[1] as u32,
depth_or_array_layers: 1,
},
mip_level_count: 1,
sample_count: self.sample_count,
dimension: wgpu::TextureDimension::D2,
format: surface_format,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
view_formats: &[],
});
let multisampled_view = multisampled_texture.create_view(&Default::default());
let mut encoder = device.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
{
let mut pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Main Render Pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &multisampled_view,
resolve_target: Some(view),
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: 0.1,
g: 0.1,
b: 0.2,
a: 1.0,
}),
store: wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment {
view: &self.depth_texture,
depth_ops: Some(wgpu::Operations {
load: wgpu::LoadOp::Clear(1.0),
store: wgpu::StoreOp::Store,
}),
stencil_ops: None,
}),
..Default::default()
});
pass.set_pipeline(&self.pipeline);
pass.set_bind_group(0, &globals.bind_group, &[]);
pass.set_bind_group(1, &light_manager.bind_group, &[]);
if let Some(clusters) = &light_manager.cluster_buffers {
pass.set_bind_group(2, &clusters.bind_group, &[]);
}
for shape in geometry.shapes() {
if let Some(mesh) = geometry.get(&shape) {
let relevant = instances.raw_instances_for_shape(shape);
if relevant.is_empty() {
continue;
}
pass.set_vertex_buffer(0, mesh.vertex_buffer.slice(..));
pass.set_vertex_buffer(1, instances.buffer().slice(..));
pass.set_index_buffer(mesh.index_buffer.slice(..), wgpu::IndexFormat::Uint16);
pass.draw_indexed(0..mesh.index_count, 0, 0..relevant.len() as u32);
}
}
}
queue.submit(Some(encoder.finish()));
output.present();
Ok(())
}
}

View File

@ -5,12 +5,17 @@ use cgmath::{perspective, Deg, Matrix4, Point3, Vector3};
use log::info;
use pollster::FutureExt;
use wgpu::util::DeviceExt;
use wgpu::{Adapter, BindGroup, BindGroupLayout, Device, Instance, PresentMode, Queue, Surface, SurfaceCapabilities, SurfaceConfiguration};
use wgpu::{Adapter, BindGroup, BindGroupLayout, Device, Instance, PresentMode, Queue, Surface, SurfaceCapabilities, SurfaceConfiguration, SurfaceError};
use winit::dpi::PhysicalSize;
use winit::window::{Window};
use crate::camera::Camera;
use crate::device_manager::DeviceManager;
use crate::geometry_manager::GeometryManager;
use crate::globals::GlobalsManager;
use crate::instance_manager::InstanceManager;
use crate::light::{ClusterBuffers, GpuLight, LightManager};
use crate::render::{create_circle_vertices, create_sphere_vertices, Geometry, Globals, InstanceRaw, RenderInstance, SampleCount, Shape, Vertex};
use crate::renderer::Renderer;
pub struct State<'a> {
surface: Surface<'a>,
@ -18,66 +23,53 @@ pub struct State<'a> {
queue: Queue,
config: SurfaceConfiguration,
sample_count: SampleCount,
size: PhysicalSize<u32>,
window: Arc<Window>,
pub camera: Camera,
render_pipeline: wgpu::RenderPipeline,
instances: Vec<RenderInstance>,
instance_buffer: wgpu::Buffer,
geometries: HashMap<Shape, Geometry>,
global_bind_group: BindGroup,
global_buffer: wgpu::Buffer,
camera: Camera,
depth_texture: wgpu::TextureView,
pub globals: GlobalsManager,
pub geometry_manager: GeometryManager,
pub instance_manager: InstanceManager,
pub light_manager: LightManager,
pub renderer: Renderer,
}
impl<'a> State<'a> {
pub(crate) fn new(window: Window) -> Self {
let window_arc = Arc::new(window);
let size = window_arc.inner_size();
let window = Arc::new(window);
let size = window.inner_size();
let instance = Self::create_gpu_instance();
let surface = instance.create_surface(window_arc.clone()).unwrap();
let surface = instance.create_surface(window.clone()).unwrap();
let adapter = Self::create_adapter(instance, &surface);
let (device, queue) = Self::create_device(&adapter);
let surface_caps = surface.get_capabilities(&adapter);
let config = Self::create_surface_config(size, surface_caps);
let capabilities = surface.get_capabilities(&adapter);
let config = Self::create_surface_config(size, capabilities);
surface.configure(&device, &config);
let sample_count = SampleCount(Self::probe_msaa_support(&device, &config));
info!("MSAA sample count: {}", sample_count.0);
info!("MSAA sample count: {}", sample_count.get());
let aspect = config.width as f32 / config.height as f32;
let camera = Camera::new(aspect);
let view_proj = camera.build_view_projection_matrix();
let camera = Camera::new(config.width as f32 / config.height as f32);
let globals = Globals {
view_proj: view_proj.into(),
resolution: [config.width as f32, config.height as f32],
_padding: [0.0, 0.0],
};
let (global_buffer, global_bind_group_layout, global_bind_group) = Self::create_global_buffer(&device);
queue.write_buffer(&global_buffer, 0, bytemuck::cast_slice(&[globals]));
let globals = GlobalsManager::new(&device, config.width, config.height, &camera);
let geometry_manager = GeometryManager::new(&device);
let instance_manager = InstanceManager::new(&device);
let mut light_manager = LightManager::new(&device, 100);
let mut light_manager = LightManager::new(&device, 10);
let render_pipeline = Self::create_render_pipeline(&queue, &device, &config, sample_count.0, &global_bind_group_layout, &mut light_manager, &camera);
let geometries = Self::create_geometries(&device);
let instances = vec![];
let instance_data: Vec<InstanceRaw> = instances.iter().map(RenderInstance::to_raw).collect();
let instance_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Instance Buffer"),
contents: bytemuck::cast_slice(&instance_data),
usage: wgpu::BufferUsages::VERTEX | wgpu::BufferUsages::COPY_DST,
});
let depth_texture = Self::create_depth_texture(&device, config.width, config.height, sample_count.get());
let renderer = Renderer::new(
&device,
&config,
globals.layout(),
&mut light_manager,
&camera,
sample_count.get(),
);
Self {
surface,
@ -86,106 +78,13 @@ impl<'a> State<'a> {
config,
sample_count,
size,
window: window_arc,
render_pipeline,
geometries,
global_bind_group,
global_buffer,
instances,
instance_buffer,
window,
camera,
depth_texture,
light_manager
}
}
fn create_global_buffer(device: &wgpu::Device) -> (wgpu::Buffer, BindGroupLayout, BindGroup) {
let global_buffer = device.create_buffer(&wgpu::BufferDescriptor {
label: Some("Global Buffer"),
size: size_of::<Globals>() as u64,
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
mapped_at_creation: false,
});
let global_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: Some("Global Bind Group Layout"),
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX_FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
});
let global_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &global_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: global_buffer.as_entire_binding(),
}],
label: Some("Global Bind Group"),
});
(global_buffer, global_bind_group_layout, global_bind_group)
}
fn update_lights(&mut self) {
let light_data: Vec<GpuLight> = self.light_manager.lights.iter().map(|l| l.to_gpu()).collect();
self.queue.write_buffer(&self.light_manager.buffer, 0, bytemuck::cast_slice(&light_data));
}
fn create_depth_texture(device: &Device, width: u32, height: u32, sample_count: u32) -> wgpu::TextureView {
let texture = device.create_texture(&wgpu::TextureDescriptor {
label: Some("Depth Texture"),
size: wgpu::Extent3d {
width,
height,
depth_or_array_layers: 1,
},
mip_level_count: 1,
sample_count,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Depth32Float,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
view_formats: &[],
});
texture.create_view(&Default::default())
}
fn create_geometries(device: &Device) -> HashMap<Shape, Geometry> {
let mut geometries = HashMap::new();
let (circle_vertices, circle_indices) = create_circle_vertices(512, 0.5, [0.5, 0.5, 0.5]);
let circle_geometry = Self::create_geometry(device, &circle_vertices, &circle_indices);
geometries.insert(Shape::Circle, circle_geometry);
let (sphere_vertices, sphere_indices) = create_sphere_vertices(32, 32, 0.5, [0.5, 0.5, 0.5]);
let sphere_geometry = Self::create_geometry(device, &sphere_vertices, &sphere_indices);
geometries.insert(Shape::Sphere, sphere_geometry);
geometries
}
fn create_geometry(device: &Device, vertices: &[Vertex], indices: &[u16]) -> Geometry {
let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Vertex Buffer"),
contents: bytemuck::cast_slice(vertices),
usage: wgpu::BufferUsages::VERTEX,
});
let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Index Buffer"),
contents: bytemuck::cast_slice(indices),
usage: wgpu::BufferUsages::INDEX,
});
Geometry {
vertex_buffer,
index_buffer,
index_count: indices.len() as u32,
globals,
geometry_manager,
instance_manager,
light_manager,
renderer,
}
}
@ -218,80 +117,6 @@ impl<'a> State<'a> {
})
}
fn create_render_pipeline(queue: &Queue, device: &Device, config: &SurfaceConfiguration, sample_count: u32, global_bind_group_layout: &BindGroupLayout, light_manager: &mut LightManager, camera: &Camera) -> wgpu::RenderPipeline {
let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some("Shader"),
source: wgpu::ShaderSource::Wgsl(include_str!("shader.wgsl").into()),
});
let cluster_assignment = light_manager.compute_cluster_assignments(
camera.build_view_matrix(),
camera.build_view_projection_matrix(),
config.width as f32,
config.height as f32,
);
let cluster_buffers = light_manager.create_cluster_buffers(&device, &cluster_assignment);
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[
&global_bind_group_layout,
&light_manager.layout,
&cluster_buffers.layout,
],
push_constant_ranges: &[],
});
device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: Some("vs_main"),
buffers: &[Vertex::desc(), InstanceRaw::desc()],
compilation_options: Default::default(),
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: Some("fs_main"),
targets: &[Some(wgpu::ColorTargetState {
format: config.format,
blend: Some(wgpu::BlendState::REPLACE),
write_mask: wgpu::ColorWrites::ALL,
})],
compilation_options: wgpu::PipelineCompilationOptions::default(),
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: None,
// Setting this to anything other than Fill requires Features::NON_FILL_POLYGON_MODE
polygon_mode: wgpu::PolygonMode::Fill,
// Requires Features::DEPTH_CLIP_CONTROL
unclipped_depth: false,
// Requires Features::CONSERVATIVE_RASTERIZATION
conservative: false,
},
depth_stencil: Some(wgpu::DepthStencilState {
format: wgpu::TextureFormat::Depth32Float,
depth_write_enabled: true,
depth_compare: wgpu::CompareFunction::Less,
stencil: wgpu::StencilState::default(),
bias: wgpu::DepthBiasState::default(),
}),
multisample: wgpu::MultisampleState {
count: sample_count,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
cache: None,
})
}
fn create_surface_config(size: PhysicalSize<u32>, capabilities: SurfaceCapabilities) -> wgpu::SurfaceConfiguration {
let surface_format = capabilities.formats.iter()
.find(|f| f.is_srgb())
@ -339,148 +164,39 @@ impl<'a> State<'a> {
}
pub(crate) fn resize(&mut self, new_size: PhysicalSize<u32>) {
self.size = new_size;
if new_size.width > 0 && new_size.height > 0 {
self.size = new_size;
self.config.width = new_size.width;
self.config.height = new_size.height;
self.surface.configure(&self.device, &self.config);
self.config.width = max(new_size.width, 1);
self.config.height = max(new_size.height, 1);
self.surface.configure(&self.device, &self.config);
self.camera.set_aspect(self.config.width as f32 / self.config.height as f32);
let view_proj = self.camera.build_view_projection_matrix();
let new_globals = Globals {
view_proj: view_proj.into(),
resolution: [self.config.width as f32, self.config.height as f32],
_padding: [0.0, 0.0],
};
self.queue.write_buffer(&self.global_buffer, 0, bytemuck::cast_slice(&[new_globals]));
self.depth_texture = Self::create_depth_texture(&self.device, self.config.width, self.config.height, self.sample_count.get());
println!("Resized to {:?} from state!", new_size);
self.camera.set_aspect(new_size.width as f32 / new_size.height as f32);
self.globals.resize(new_size.width, new_size.height);
self.renderer.resize(&self.device, new_size.width, new_size.height);
}
}
pub(crate) fn render(&mut self) -> Result<(), wgpu::SurfaceError> {
pub fn render(&mut self) -> Result<(), SurfaceError> {
let output = self.surface.get_current_texture()?;
let view = output.texture.create_view(&Default::default());
let multisampled_texture = self.device.create_texture(&wgpu::TextureDescriptor {
label: Some("Multisampled Render Target"),
size: wgpu::Extent3d {
width: self.config.width,
height: self.config.height,
depth_or_array_layers: 1,
},
mip_level_count: 1,
sample_count: self.sample_count.get(),
dimension: wgpu::TextureDimension::D2,
format: self.config.format,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
view_formats: &[],
});
let multisampled_view = multisampled_texture.create_view(&Default::default());
self.renderer.render_frame(
&self.device,
&self.queue,
output,
&view,
self.config.format,
&mut self.globals,
&self.camera,
&mut self.light_manager,
&self.geometry_manager,
&self.instance_manager,
let view_proj = self.camera.build_view_projection_matrix();
let globals = Globals {
view_proj: view_proj.into(),
resolution: [self.config.width as f32, self.config.height as f32],
_padding: [0.0, 0.0],
};
self.queue.write_buffer(&self.global_buffer, 0, bytemuck::cast_slice(&[globals]));
let assignment = self.light_manager.compute_cluster_assignments(
self.camera.build_view_matrix(),
self.camera.build_view_projection_matrix(),
self.config.width as f32,
self.config.height as f32,
);
self.light_manager.update_cluster_buffers(&self.device, &self.queue, &assignment);
let mut encoder = self.device.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Render Pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &multisampled_view,
resolve_target: Some(&output.texture.create_view(&Default::default())),
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: 1.0,
g: 0.2,
b: 0.3,
a: 1.0,
}),
store: wgpu::StoreOp::Store,
}
})],
depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment {
view: &self.depth_texture,
depth_ops: Some(wgpu::Operations {
load: wgpu::LoadOp::Clear(1.0),
store: wgpu::StoreOp::Store,
}),
stencil_ops: None,
}),
occlusion_query_set: None,
timestamp_writes: None,
});
render_pass.set_pipeline(&self.render_pipeline);
render_pass.set_bind_group(0, &self.global_bind_group, &[]);
// Update the light manager buffer
self.light_manager.update_gpu(&self.queue);
render_pass.set_bind_group(1, &self.light_manager.bind_group, &[]);
if let Some(clusters) = &self.light_manager.cluster_buffers {
render_pass.set_bind_group(2, &clusters.bind_group, &[]);
}
for shape in self.geometries.keys().copied() {
let geometry = &self.geometries[&shape];
let relevant_instances: Vec<_> = self.instances
.iter()
.enumerate()
.filter(|(_, inst)| inst.shape == shape)
.map(|(i, _)| i as u32)
.collect();
if relevant_instances.is_empty() {
continue;
}
render_pass.set_vertex_buffer(0, geometry.vertex_buffer.slice(..));
render_pass.set_vertex_buffer(1, self.instance_buffer.slice(..));
render_pass.set_index_buffer(geometry.index_buffer.slice(..), wgpu::IndexFormat::Uint16);
render_pass.draw_indexed(0..geometry.index_count, 0, 0..relevant_instances.len() as u32);
}
}
self.queue.submit(std::iter::once(encoder.finish()));
output.present();
Ok(())
)
}
pub fn set_instances(&mut self, instances: Vec<RenderInstance>) {
let raw_data: Vec<InstanceRaw> = instances.iter().map(RenderInstance::to_raw).collect();
let byte_len = (raw_data.len() * size_of::<InstanceRaw>()) as wgpu::BufferAddress;
// Resize the buffer if necessary
if byte_len > self.instance_buffer.size() {
self.instance_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Instance Buffer (resized)"),
contents: bytemuck::cast_slice(&raw_data),
usage: wgpu::BufferUsages::VERTEX | wgpu::BufferUsages::COPY_DST,
});
} else {
self.queue.write_buffer(&self.instance_buffer, 0, bytemuck::cast_slice(&raw_data));
}
self.instances = instances;
self.instance_manager.set_instances(&self.device, &self.queue, instances);
}
pub fn window(&self) -> &Window {