use std::cmp::max; use std::sync::{Arc, RwLock}; use std::thread; use std::time::Duration; use cgmath::num_traits::ToPrimitive; use cgmath::Rotation3; use pollster::FutureExt; use wgpu::util::DeviceExt; use wgpu::{Adapter, Device, Instance, PresentMode, Queue, Surface, SurfaceCapabilities}; use winit::application::ApplicationHandler; use winit::dpi::PhysicalSize; use winit::event::WindowEvent; use winit::event_loop::{ActiveEventLoop, EventLoop}; use winit::window::{Window, WindowId}; use solar_engine::{Body, Simulator}; pub async fn run() { let event_loop = EventLoop::new().unwrap(); let mut window_state = StateApplication::new(); let _ = event_loop.run_app(&mut window_state); } struct RenderInstance { position: cgmath::Vector3, rotation: cgmath::Quaternion, } impl RenderInstance { fn to_raw(&self) -> InstanceRaw { let model = cgmath::Matrix4::from_translation(self.position) * cgmath::Matrix4::from(self.rotation); InstanceRaw { model: model.into() } } } #[repr(C)] #[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)] struct InstanceRaw { model: [[f32; 4]; 4], } impl InstanceRaw { fn desc() -> wgpu::VertexBufferLayout<'static> { wgpu::VertexBufferLayout { array_stride: size_of::() as wgpu::BufferAddress, step_mode: wgpu::VertexStepMode::Instance, attributes: &[ wgpu::VertexAttribute { offset: 0, shader_location: 5, format: wgpu::VertexFormat::Float32x4 }, wgpu::VertexAttribute { offset: size_of::<[f32; 4]>() as wgpu::BufferAddress, shader_location: 6, format: wgpu::VertexFormat::Float32x4 }, wgpu::VertexAttribute { offset: size_of::<[f32; 8]>() as wgpu::BufferAddress, shader_location: 7, format: wgpu::VertexFormat::Float32x4 }, wgpu::VertexAttribute { offset: size_of::<[f32; 12]>() as wgpu::BufferAddress, shader_location: 8, format: wgpu::VertexFormat::Float32x4 }, ], } } } #[repr(C)] #[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)] struct Vertex { position: [f32; 3], color: [f32; 3], } impl Vertex { const ATTRIBS: [wgpu::VertexAttribute; 2] = wgpu::vertex_attr_array![0 => Float32x3, 1 => Float32x3]; fn desc() -> wgpu::VertexBufferLayout<'static> { wgpu::VertexBufferLayout { array_stride: size_of::() as wgpu::BufferAddress, step_mode: wgpu::VertexStepMode::Vertex, attributes: &Self::ATTRIBS, } } } const VERTICES: &[Vertex] = &[ Vertex { position: [-0.0868241, 0.49240386, 0.0], color: [0.5, 0.0, 0.5] }, Vertex { position: [-0.49513406, 0.06958647, 0.0], color: [0.5, 0.0, 0.5] }, Vertex { position: [-0.21918549, -0.44939706, 0.0], color: [0.5, 0.0, 0.5] }, Vertex { position: [0.35966998, -0.3473291, 0.0], color: [0.5, 0.0, 0.5] }, Vertex { position: [0.44147372, 0.2347359, 0.0], color: [0.5, 0.0, 0.5] }, ]; const INDICES: &[u16] = &[ 0, 1, 4, 1, 2, 4, 2, 3, 4, ]; struct StateApplication<'a> { state: Option>, } impl<'a> StateApplication<'a> { pub fn new() -> Self { Self { state: None, } } } impl<'a> ApplicationHandler for StateApplication<'a>{ fn resumed(&mut self, event_loop: &ActiveEventLoop) { let window = event_loop.create_window(Window::default_attributes().with_title("Hello!")).unwrap(); self.state = Some(State::new(window)); } fn window_event(&mut self, event_loop: &ActiveEventLoop, window_id: WindowId, event: WindowEvent) { let window = self.state.as_ref().unwrap().window(); if window.id() == window_id { match event { WindowEvent::CloseRequested => { event_loop.exit(); } WindowEvent::Resized(physical_size) => { self.state.as_mut().unwrap().resize(physical_size); } WindowEvent::RedrawRequested => { self.state.as_mut().unwrap().update(); self.state.as_mut().unwrap().render().unwrap(); } WindowEvent::KeyboardInput { .. } => { if let Some(state) = self.state.as_mut() { if state.input(&event) { return; } } } _ => {} } } } fn about_to_wait(&mut self, _event_loop: &ActiveEventLoop) { let window = self.state.as_ref().unwrap().window(); window.request_redraw(); } } struct State<'a> { surface: Surface<'a>, device: Device, queue: Queue, config: wgpu::SurfaceConfiguration, size: PhysicalSize, window: Arc, render_pipeline: wgpu::RenderPipeline, vertex_buffer: wgpu::Buffer, index_buffer: wgpu::Buffer, instances: Vec, instance_buffer: wgpu::Buffer, num_vertices: u32, num_indices: u32, simulator: Arc>, } impl<'a> State<'a> { pub fn new (window: Window) -> Self { let window_arc = Arc::new(window); let size = window_arc.inner_size(); let instance = Self::create_gpu_instance(); let surface = instance.create_surface(window_arc.clone()).unwrap(); let adapter = Self::create_adapter(instance, &surface); let (device, queue) = Self::create_device(&adapter); let surface_caps = surface.get_capabilities(&adapter); let config = Self::create_surface_config(size, surface_caps); surface.configure(&device, &config); let render_pipeline = Self::create_render_pipeline(&device, &config); let vertex_buffer = Self::create_vertex_buffer(&device); let index_buffer = Self::create_index_buffer(&device); let num_vertices = VERTICES.len() as u32; let num_indices = INDICES.len() as u32; let mut sim = Simulator::new(60.0 * 60.0 * 24.0); sim.add_body(Body { name: "Sun".to_string(), position: [0.0, 0.0], velocity: [0.0, 0.0], mass: 1.989e30, }); sim.add_body(Body { name: "Earth".to_string(), position: [1.496e11, 0.0], velocity: [0.0, 29780.0], mass: 5.972e24, }); let simulator = Arc::new(RwLock::new(sim)); let sim_clone = simulator.clone(); thread::spawn(move || { loop { { let mut sim = sim_clone.write().unwrap(); sim.step(); } thread::sleep(Duration::from_millis(16)); } }); let instances = { let sim = simulator.read().unwrap(); sim.bodies.iter().map(|b| RenderInstance { position: cgmath::Vector3::new( (b.position[0] / 1.496e11) as f32, (b.position[1] / 1.496e11) as f32, 0.0, ), rotation: cgmath::Quaternion::from_angle_z(cgmath::Deg(0.0)), }).collect::>() }; let instance_data: Vec = instances.iter().map(RenderInstance::to_raw).collect(); let instance_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Instance Buffer"), contents: bytemuck::cast_slice(&instance_data), usage: wgpu::BufferUsages::VERTEX | wgpu::BufferUsages::COPY_DST, }); Self { surface, device, queue, config, size, window: window_arc, render_pipeline, vertex_buffer, index_buffer, instances, instance_buffer, num_vertices, num_indices, simulator, } } pub fn input(&mut self, event: &WindowEvent) -> bool { false } fn update(&mut self) { let updated_instances: Vec = { let sim = self.simulator.read().unwrap(); sim.bodies.iter().map(|b| RenderInstance { position: cgmath::Vector3::new((b.position[0] / 1.496e11) as f32, (b.position[1] / 1.496e11) as f32, 0.0), rotation: cgmath::Quaternion::from_angle_z(cgmath::Deg(0.0)), }).collect() }; let instance_data: Vec = updated_instances.iter().map(RenderInstance::to_raw).collect(); self.queue.write_buffer(&self.instance_buffer, 0, bytemuck::cast_slice(&instance_data)); self.instances = updated_instances; } fn create_index_buffer(device: &Device) -> wgpu::Buffer { device.create_buffer_init( &wgpu::util::BufferInitDescriptor { label: Some("Index Buffer"), contents: bytemuck::cast_slice(INDICES), usage: wgpu::BufferUsages::INDEX, } ) } fn create_vertex_buffer(device: &Device) -> wgpu::Buffer { device.create_buffer_init( &wgpu::util::BufferInitDescriptor { label: Some("Vertex Buffer"), contents: bytemuck::cast_slice(VERTICES), usage: wgpu::BufferUsages::VERTEX, } ) } fn create_render_pipeline(device: &Device, config: &wgpu::SurfaceConfiguration) -> wgpu::RenderPipeline { let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor { label: Some("Shader"), source: wgpu::ShaderSource::Wgsl(include_str!("shader.wgsl").into()), }); let render_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { label: Some("Render Pipeline Layout"), bind_group_layouts: &[], push_constant_ranges: &[], }); device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { label: Some("Render Pipeline"), layout: Some(&render_pipeline_layout), vertex: wgpu::VertexState { module: &shader, entry_point: Some("vs_main"), buffers: &[Vertex::desc(), InstanceRaw::desc()], compilation_options: Default::default(), }, fragment: Some(wgpu::FragmentState { module: &shader, entry_point: Some("fs_main"), targets: &[Some(wgpu::ColorTargetState { format: config.format, blend: Some(wgpu::BlendState::REPLACE), write_mask: wgpu::ColorWrites::ALL, })], compilation_options: wgpu::PipelineCompilationOptions::default(), }), primitive: wgpu::PrimitiveState { topology: wgpu::PrimitiveTopology::TriangleList, // 1. strip_index_format: None, front_face: wgpu::FrontFace::Ccw, cull_mode: Some(wgpu::Face::Back), // Setting this to anything other than Fill requires Features::NON_FILL_POLYGON_MODE polygon_mode: wgpu::PolygonMode::Fill, // Requires Features::DEPTH_CLIP_CONTROL unclipped_depth: false, // Requires Features::CONSERVATIVE_RASTERIZATION conservative: false, }, depth_stencil: None, multisample: wgpu::MultisampleState { count: 1, mask: !0, alpha_to_coverage_enabled: false, }, multiview: None, cache: None, }) } fn create_surface_config(size: PhysicalSize, capabilities: SurfaceCapabilities) -> wgpu::SurfaceConfiguration { let surface_format = capabilities.formats.iter() .find(|f| f.is_srgb()) .copied() .unwrap_or(capabilities.formats[0]); wgpu::SurfaceConfiguration { usage: wgpu::TextureUsages::RENDER_ATTACHMENT, format: surface_format, width: size.width, height: size.height, present_mode: PresentMode::AutoNoVsync, alpha_mode: capabilities.alpha_modes[0], view_formats: vec![], desired_maximum_frame_latency: 2, } } fn create_device(adapter: &Adapter) -> (Device, Queue) { adapter.request_device( &wgpu::DeviceDescriptor { required_features: wgpu::Features::empty(), required_limits: wgpu::Limits::default(), memory_hints: Default::default(), label: None, trace: Default::default(), }).block_on().unwrap() } fn create_adapter(instance: Instance, surface: &Surface) -> Adapter { instance.request_adapter( &wgpu::RequestAdapterOptions { power_preference: wgpu::PowerPreference::default(), compatible_surface: Some(&surface), force_fallback_adapter: false, } ).block_on().unwrap() } fn create_gpu_instance() -> Instance { Instance::new(&wgpu::InstanceDescriptor { backends: wgpu::Backends::PRIMARY, ..Default::default() }) } pub fn resize(&mut self, new_size: PhysicalSize) { self.size = new_size; self.config.width = max(new_size.width, 1); self.config.height = max(new_size.height, 1); self.surface.configure(&self.device, &self.config); println!("Resized to {:?} from state!", new_size); } pub fn render(&mut self) -> Result<(), wgpu::SurfaceError> { let output = self.surface.get_current_texture()?; let view = output.texture.create_view(&wgpu::TextureViewDescriptor::default()); let mut encoder = self.device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: Some("Render Encoder"), }); { let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { label: Some("Render Pass"), color_attachments: &[Some(wgpu::RenderPassColorAttachment { view: &view, resolve_target: None, ops: wgpu::Operations { load: wgpu::LoadOp::Clear(wgpu::Color { r: 1.0, g: 0.2, b: 0.3, a: 1.0, }), store: wgpu::StoreOp::Store, } })], depth_stencil_attachment: None, occlusion_query_set: None, timestamp_writes: None, }); render_pass.set_pipeline(&self.render_pipeline); render_pass.set_vertex_buffer(0, self.vertex_buffer.slice(..)); render_pass.set_index_buffer(self.index_buffer.slice(..), wgpu::IndexFormat::Uint16); if !self.instances.is_empty() { render_pass.set_vertex_buffer(1, self.instance_buffer.slice(..)); render_pass.draw_indexed(0..self.num_indices, 0, 0..self.instances.len() as u32); } } self.queue.submit(std::iter::once(encoder.finish())); output.present(); Ok(()) } pub fn window(&self) -> &Window { &self.window } } fn main() { pollster::block_on(run()); }