use std::cmp::max; use std::collections::HashMap; use std::sync::{Arc}; use cgmath::{perspective, Deg, Matrix4, Point3, Vector3}; use log::info; use pollster::FutureExt; use wgpu::util::DeviceExt; use wgpu::{Adapter, BindGroup, BindGroupLayout, Device, Instance, PresentMode, Queue, Surface, SurfaceCapabilities, SurfaceConfiguration}; use winit::dpi::PhysicalSize; use winit::window::{Window}; use crate::camera::Camera; use crate::light::{ClusterBuffers, GpuLight, LightManager}; use crate::render::{create_circle_vertices, create_sphere_vertices, Geometry, Globals, InstanceRaw, RenderInstance, SampleCount, Shape, Vertex}; pub struct State<'a> { surface: Surface<'a>, device: Device, queue: Queue, config: SurfaceConfiguration, sample_count: SampleCount, size: PhysicalSize, window: Arc, render_pipeline: wgpu::RenderPipeline, instances: Vec, instance_buffer: wgpu::Buffer, geometries: HashMap, global_bind_group: BindGroup, global_buffer: wgpu::Buffer, camera: Camera, depth_texture: wgpu::TextureView, pub light_manager: LightManager, } impl<'a> State<'a> { pub(crate) fn new(window: Window) -> Self { let window_arc = Arc::new(window); let size = window_arc.inner_size(); let instance = Self::create_gpu_instance(); let surface = instance.create_surface(window_arc.clone()).unwrap(); let adapter = Self::create_adapter(instance, &surface); let (device, queue) = Self::create_device(&adapter); let surface_caps = surface.get_capabilities(&adapter); let config = Self::create_surface_config(size, surface_caps); surface.configure(&device, &config); let sample_count = SampleCount(Self::probe_msaa_support(&device, &config)); info!("MSAA sample count: {}", sample_count.0); let aspect = config.width as f32 / config.height as f32; let camera = Camera::new(aspect); let view_proj = camera.build_view_projection_matrix(); let globals = Globals { view_proj: view_proj.into(), resolution: [config.width as f32, config.height as f32], _padding: [0.0, 0.0], }; let (global_buffer, global_bind_group_layout, global_bind_group) = Self::create_global_buffer(&device); queue.write_buffer(&global_buffer, 0, bytemuck::cast_slice(&[globals])); let mut light_manager = LightManager::new(&device, 10); let render_pipeline = Self::create_render_pipeline(&queue, &device, &config, sample_count.0, &global_bind_group_layout, &mut light_manager, &camera); let geometries = Self::create_geometries(&device); let instances = vec![]; let instance_data: Vec = instances.iter().map(RenderInstance::to_raw).collect(); let instance_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Instance Buffer"), contents: bytemuck::cast_slice(&instance_data), usage: wgpu::BufferUsages::VERTEX | wgpu::BufferUsages::COPY_DST, }); let depth_texture = Self::create_depth_texture(&device, config.width, config.height, sample_count.get()); Self { surface, device, queue, config, sample_count, size, window: window_arc, render_pipeline, geometries, global_bind_group, global_buffer, instances, instance_buffer, camera, depth_texture, light_manager } } fn create_global_buffer(device: &wgpu::Device) -> (wgpu::Buffer, BindGroupLayout, BindGroup) { let global_buffer = device.create_buffer(&wgpu::BufferDescriptor { label: Some("Global Buffer"), size: size_of::() as u64, usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST, mapped_at_creation: false, }); let global_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { label: Some("Global Bind Group Layout"), entries: &[wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::VERTEX_FRAGMENT, ty: wgpu::BindingType::Buffer { ty: wgpu::BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: None, }, count: None, }], }); let global_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &global_bind_group_layout, entries: &[wgpu::BindGroupEntry { binding: 0, resource: global_buffer.as_entire_binding(), }], label: Some("Global Bind Group"), }); (global_buffer, global_bind_group_layout, global_bind_group) } fn update_lights(&mut self) { let light_data: Vec = self.light_manager.lights.iter().map(|l| l.to_gpu()).collect(); self.queue.write_buffer(&self.light_manager.buffer, 0, bytemuck::cast_slice(&light_data)); } fn create_depth_texture(device: &Device, width: u32, height: u32, sample_count: u32) -> wgpu::TextureView { let texture = device.create_texture(&wgpu::TextureDescriptor { label: Some("Depth Texture"), size: wgpu::Extent3d { width, height, depth_or_array_layers: 1, }, mip_level_count: 1, sample_count, dimension: wgpu::TextureDimension::D2, format: wgpu::TextureFormat::Depth32Float, usage: wgpu::TextureUsages::RENDER_ATTACHMENT, view_formats: &[], }); texture.create_view(&Default::default()) } fn create_geometries(device: &Device) -> HashMap { let mut geometries = HashMap::new(); let (circle_vertices, circle_indices) = create_circle_vertices(512, 0.5, [0.5, 0.5, 0.5]); let circle_geometry = Self::create_geometry(device, &circle_vertices, &circle_indices); geometries.insert(Shape::Circle, circle_geometry); let (sphere_vertices, sphere_indices) = create_sphere_vertices(32, 32, 0.5, [0.5, 0.5, 0.5]); let sphere_geometry = Self::create_geometry(device, &sphere_vertices, &sphere_indices); geometries.insert(Shape::Sphere, sphere_geometry); geometries } fn create_geometry(device: &Device, vertices: &[Vertex], indices: &[u16]) -> Geometry { let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Vertex Buffer"), contents: bytemuck::cast_slice(vertices), usage: wgpu::BufferUsages::VERTEX, }); let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Index Buffer"), contents: bytemuck::cast_slice(indices), usage: wgpu::BufferUsages::INDEX, }); Geometry { vertex_buffer, index_buffer, index_count: indices.len() as u32, } } fn probe_msaa_support(device: &Device, config: &SurfaceConfiguration) -> u32 { pollster::block_on(async { for &count in &[16, 8, 4, 2] { device.push_error_scope(wgpu::ErrorFilter::Validation); let _ = device.create_texture(&wgpu::TextureDescriptor { label: Some("MSAA Probe"), size: wgpu::Extent3d { width: 4, height: 4, depth_or_array_layers: 1, }, mip_level_count: 1, sample_count: count, dimension: wgpu::TextureDimension::D2, format: config.format, usage: wgpu::TextureUsages::RENDER_ATTACHMENT, view_formats: &[], }); if device.pop_error_scope().await.is_none() { return count; } } 1 // fallback }) } fn create_render_pipeline(queue: &Queue, device: &Device, config: &SurfaceConfiguration, sample_count: u32, global_bind_group_layout: &BindGroupLayout, light_manager: &mut LightManager, camera: &Camera) -> wgpu::RenderPipeline { let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor { label: Some("Shader"), source: wgpu::ShaderSource::Wgsl(include_str!("shader.wgsl").into()), }); let cluster_assignment = light_manager.compute_cluster_assignments( camera.build_view_matrix(), camera.build_view_projection_matrix(), config.width as f32, config.height as f32, ); let cluster_buffers = light_manager.create_cluster_buffers(&device, &cluster_assignment); let render_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { label: Some("Render Pipeline Layout"), bind_group_layouts: &[ &global_bind_group_layout, &light_manager.layout, &cluster_buffers.layout, ], push_constant_ranges: &[], }); device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { label: Some("Render Pipeline"), layout: Some(&render_pipeline_layout), vertex: wgpu::VertexState { module: &shader, entry_point: Some("vs_main"), buffers: &[Vertex::desc(), InstanceRaw::desc()], compilation_options: Default::default(), }, fragment: Some(wgpu::FragmentState { module: &shader, entry_point: Some("fs_main"), targets: &[Some(wgpu::ColorTargetState { format: config.format, blend: Some(wgpu::BlendState::REPLACE), write_mask: wgpu::ColorWrites::ALL, })], compilation_options: wgpu::PipelineCompilationOptions::default(), }), primitive: wgpu::PrimitiveState { topology: wgpu::PrimitiveTopology::TriangleList, strip_index_format: None, front_face: wgpu::FrontFace::Ccw, cull_mode: None, // Setting this to anything other than Fill requires Features::NON_FILL_POLYGON_MODE polygon_mode: wgpu::PolygonMode::Fill, // Requires Features::DEPTH_CLIP_CONTROL unclipped_depth: false, // Requires Features::CONSERVATIVE_RASTERIZATION conservative: false, }, depth_stencil: Some(wgpu::DepthStencilState { format: wgpu::TextureFormat::Depth32Float, depth_write_enabled: true, depth_compare: wgpu::CompareFunction::Less, stencil: wgpu::StencilState::default(), bias: wgpu::DepthBiasState::default(), }), multisample: wgpu::MultisampleState { count: sample_count, mask: !0, alpha_to_coverage_enabled: false, }, multiview: None, cache: None, }) } fn create_surface_config(size: PhysicalSize, capabilities: SurfaceCapabilities) -> wgpu::SurfaceConfiguration { let surface_format = capabilities.formats.iter() .find(|f| f.is_srgb()) .copied() .unwrap_or(capabilities.formats[0]); SurfaceConfiguration { usage: wgpu::TextureUsages::RENDER_ATTACHMENT, format: surface_format, width: size.width, height: size.height, present_mode: PresentMode::AutoVsync, alpha_mode: capabilities.alpha_modes[0], view_formats: vec![], desired_maximum_frame_latency: 2, } } fn create_device(adapter: &Adapter) -> (Device, Queue) { adapter.request_device( &wgpu::DeviceDescriptor { required_features: wgpu::Features::TEXTURE_ADAPTER_SPECIFIC_FORMAT_FEATURES, required_limits: wgpu::Limits::default(), memory_hints: Default::default(), label: None, trace: Default::default(), }).block_on().unwrap() } fn create_adapter(instance: Instance, surface: &Surface) -> Adapter { instance.request_adapter( &wgpu::RequestAdapterOptions { power_preference: wgpu::PowerPreference::default(), compatible_surface: Some(&surface), force_fallback_adapter: false, } ).block_on().unwrap() } fn create_gpu_instance() -> Instance { Instance::new(&wgpu::InstanceDescriptor { backends: wgpu::Backends::PRIMARY, ..Default::default() }) } pub(crate) fn resize(&mut self, new_size: PhysicalSize) { self.size = new_size; self.config.width = max(new_size.width, 1); self.config.height = max(new_size.height, 1); self.surface.configure(&self.device, &self.config); self.camera.set_aspect(self.config.width as f32 / self.config.height as f32); let view_proj = self.camera.build_view_projection_matrix(); let new_globals = Globals { view_proj: view_proj.into(), resolution: [self.config.width as f32, self.config.height as f32], _padding: [0.0, 0.0], }; self.queue.write_buffer(&self.global_buffer, 0, bytemuck::cast_slice(&[new_globals])); self.depth_texture = Self::create_depth_texture(&self.device, self.config.width, self.config.height, self.sample_count.get()); println!("Resized to {:?} from state!", new_size); } pub(crate) fn render(&mut self) -> Result<(), wgpu::SurfaceError> { let output = self.surface.get_current_texture()?; let multisampled_texture = self.device.create_texture(&wgpu::TextureDescriptor { label: Some("Multisampled Render Target"), size: wgpu::Extent3d { width: self.config.width, height: self.config.height, depth_or_array_layers: 1, }, mip_level_count: 1, sample_count: self.sample_count.get(), dimension: wgpu::TextureDimension::D2, format: self.config.format, usage: wgpu::TextureUsages::RENDER_ATTACHMENT, view_formats: &[], }); let multisampled_view = multisampled_texture.create_view(&Default::default()); let view_proj = self.camera.build_view_projection_matrix(); let globals = Globals { view_proj: view_proj.into(), resolution: [self.config.width as f32, self.config.height as f32], _padding: [0.0, 0.0], }; self.queue.write_buffer(&self.global_buffer, 0, bytemuck::cast_slice(&[globals])); let assignment = self.light_manager.compute_cluster_assignments( self.camera.build_view_matrix(), self.camera.build_view_projection_matrix(), self.config.width as f32, self.config.height as f32, ); self.light_manager.update_cluster_buffers(&self.device, &self.queue, &assignment); let mut encoder = self.device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: Some("Render Encoder"), }); { let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { label: Some("Render Pass"), color_attachments: &[Some(wgpu::RenderPassColorAttachment { view: &multisampled_view, resolve_target: Some(&output.texture.create_view(&Default::default())), ops: wgpu::Operations { load: wgpu::LoadOp::Clear(wgpu::Color { r: 1.0, g: 0.2, b: 0.3, a: 1.0, }), store: wgpu::StoreOp::Store, } })], depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment { view: &self.depth_texture, depth_ops: Some(wgpu::Operations { load: wgpu::LoadOp::Clear(1.0), store: wgpu::StoreOp::Store, }), stencil_ops: None, }), occlusion_query_set: None, timestamp_writes: None, }); render_pass.set_pipeline(&self.render_pipeline); render_pass.set_bind_group(0, &self.global_bind_group, &[]); // Update the light manager buffer self.light_manager.update_gpu(&self.queue); render_pass.set_bind_group(1, &self.light_manager.bind_group, &[]); if let Some(clusters) = &self.light_manager.cluster_buffers { render_pass.set_bind_group(2, &clusters.bind_group, &[]); } for shape in self.geometries.keys().copied() { let geometry = &self.geometries[&shape]; let relevant_instances: Vec<_> = self.instances .iter() .enumerate() .filter(|(_, inst)| inst.shape == shape) .map(|(i, _)| i as u32) .collect(); if relevant_instances.is_empty() { continue; } render_pass.set_vertex_buffer(0, geometry.vertex_buffer.slice(..)); render_pass.set_vertex_buffer(1, self.instance_buffer.slice(..)); render_pass.set_index_buffer(geometry.index_buffer.slice(..), wgpu::IndexFormat::Uint16); render_pass.draw_indexed(0..geometry.index_count, 0, 0..relevant_instances.len() as u32); } } self.queue.submit(std::iter::once(encoder.finish())); output.present(); Ok(()) } pub fn set_instances(&mut self, instances: Vec) { let raw_data: Vec = instances.iter().map(RenderInstance::to_raw).collect(); let byte_len = (raw_data.len() * size_of::()) as wgpu::BufferAddress; // Resize the buffer if necessary if byte_len > self.instance_buffer.size() { self.instance_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Instance Buffer (resized)"), contents: bytemuck::cast_slice(&raw_data), usage: wgpu::BufferUsages::VERTEX | wgpu::BufferUsages::COPY_DST, }); } else { self.queue.write_buffer(&self.instance_buffer, 0, bytemuck::cast_slice(&raw_data)); } self.instances = instances; } pub fn window(&self) -> &Window { &self.window } pub fn camera_mut(&mut self) -> &mut crate::camera::Camera { &mut self.camera } pub fn camera(&self) -> &crate::camera::Camera { &self.camera } }